搜索快捷键 cmd + k | ctrl + k
- 安装
- 文档
- 入门
- 连接
- 数据导入
- 客户端 API
- 概览
- ADBC
- C
- C++
- CLI
- Dart
- Go
- Java (JDBC)
- Julia
- Node.js (已弃用)
- Node.js (Neo)
- ODBC
- PHP
- Python
- R
- Rust
- Swift
- Wasm
- SQL
- 介绍
- 语句
- 概览
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH 和 DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT 和 IMPORT DATABASE
- INSERT
- LOAD / INSTALL
- PIVOT
- 性能分析
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- 事务管理
- UNPIVOT
- UPDATE
- USE
- VACUUM
- 查询语法
- SELECT
- FROM 和 JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT 和 OFFSET
- SAMPLE
- 展开嵌套
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- 集合操作
- 预处理语句
- 数据类型
- 表达式
- 函数
- 概览
- 聚合函数
- 数组函数
- 位字符串函数
- Blob 函数
- 日期格式化函数
- 日期函数
- 日期部分函数
- 枚举函数
- 间隔函数
- Lambda 函数
- 列表函数
- 映射函数
- 嵌套函数
- 数值函数
- 模式匹配
- 正则表达式
- 结构体函数
- 文本函数
- 时间函数
- 时间戳函数
- 带时区时间戳函数
- 联合函数
- 实用函数
- 窗口函数
- 约束
- 索引
- 元查询
- DuckDB 的 SQL 方言
- 示例
- 配置
- 扩展
- 核心扩展
- 概览
- 自动补全
- Avro
- AWS
- Azure
- Delta
- DuckLake
- 编码
- Excel
- 全文搜索
- httpfs (HTTP 和 S3)
- Iceberg
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- 空间
- SQLite
- TPC-DS
- TPC-H
- UI
- VSS
- 指南
- 概览
- 数据查看器
- 数据库集成
- 文件格式
- 概览
- CSV 导入
- CSV 导出
- 直接读取文件
- Excel 导入
- Excel 导出
- JSON 导入
- JSON 导出
- Parquet 导入
- Parquet 导出
- 查询 Parquet 文件
- 使用 file: 协议访问文件
- 网络和云存储
- 概览
- HTTP Parquet 导入
- S3 Parquet 导入
- S3 Parquet 导出
- S3 Iceberg 导入
- S3 Express One
- GCS 导入
- Cloudflare R2 导入
- 通过 HTTPS / S3 使用 DuckDB
- Fastly 对象存储导入
- 元查询
- ODBC
- 性能
- Python
- 安装
- 执行 SQL
- Jupyter Notebooks
- marimo Notebooks
- Pandas 上的 SQL
- 从 Pandas 导入
- 导出到 Pandas
- 从 Numpy 导入
- 导出到 Numpy
- Arrow 上的 SQL
- 从 Arrow 导入
- 导出到 Arrow
- Pandas 上的关系型 API
- 多个 Python 线程
- 与 Ibis 集成
- 与 Polars 集成
- 使用 fsspec 文件系统
- SQL 编辑器
- SQL 功能
- 代码片段
- 故障排除
- 术语表
- 离线浏览
- 操作手册
- 开发
- 内部结构
- 为什么选择 DuckDB
- 行为准则
- 发布日历
- 路线图
- 站点地图
- 在线演示
文档 / SQL / 数据类型
布尔类型
名称 | 别名 | 描述 |
---|---|---|
BOOLEAN |
BOOL |
逻辑布尔值 (true / false ) |
BOOLEAN
类型表示一个真值陈述(“真”或“假”)。在 SQL 中,BOOLEAN
字段还可以有第三种状态“未知”,它由 SQL NULL
值表示。
选择 BOOLEAN
列的三种可能值
SELECT true, false, NULL::BOOLEAN;
布尔值可以使用字面量 true
和 false
显式创建。然而,它们最常作为比较或逻辑连接的结果而创建。例如,比较 i > 10
会产生一个布尔值。布尔值可以在 SQL 语句的 WHERE
和 HAVING
子句中使用,以从结果中过滤掉元组。在这种情况下,谓词评估为 true
的元组将通过筛选,而谓词评估为 false
或 NULL
的元组将被过滤掉。考虑以下示例
创建一个包含值 5、15 和 NULL
的表
CREATE TABLE integers (i INTEGER);
INSERT INTO integers VALUES (5), (15), (NULL);
选择所有 i > 10
的条目
SELECT * FROM integers WHERE i > 10;
在这种情况下,5 和 NULL
被过滤掉(5 > 10
为 false
,NULL > 10
为 NULL
)
i |
---|
15 |
逻辑连接
AND
/ OR
逻辑连接可用于组合布尔值。
以下是 AND
逻辑连接(即 x AND y
)的真值表。
X |
X AND true |
X AND false |
X AND NULL |
---|---|---|---|
true | true | false | NULL |
false | false | false | false |
NULL | NULL | false | NULL |
以下是 OR
逻辑连接(即 x OR y
)的真值表。
X |
X OR true |
X OR false |
X OR NULL |
---|---|---|---|
true | true | true | true |
false | true | false | NULL |
NULL | true | NULL | NULL |