搜索快捷键 cmd + k | ctrl + k
- 安装
- 文档
- 入门
- 连接
- 数据导入
- 客户端 API
- 概览
- ADBC
- C
- C++
- CLI
- Dart
- Go
- Java (JDBC)
- Julia
- Node.js (已弃用)
- Node.js (Neo)
- ODBC
- PHP
- Python
- R
- Rust
- Swift
- Wasm
- SQL
- 介绍
- 语句
- 概览
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH 和 DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT 和 IMPORT DATABASE
- INSERT
- LOAD / INSTALL
- PIVOT
- 性能分析
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- 事务管理
- UNPIVOT
- UPDATE
- USE
- VACUUM
- 查询语法
- SELECT
- FROM 和 JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT 和 OFFSET
- SAMPLE
- 展开嵌套
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- 集合操作
- 预处理语句
- 数据类型
- 表达式
- 函数
- 概览
- 聚合函数
- 数组函数
- 位字符串函数
- Blob 函数
- 日期格式化函数
- 日期函数
- 日期部分函数
- 枚举函数
- 间隔函数
- Lambda 函数
- 列表函数
- 映射函数
- 嵌套函数
- 数值函数
- 模式匹配
- 正则表达式
- 结构体函数
- 文本函数
- 时间函数
- 时间戳函数
- 带时区时间戳函数
- 联合函数
- 实用函数
- 窗口函数
- 约束
- 索引
- 元查询
- DuckDB 的 SQL 方言
- 示例
- 配置
- 扩展
- 核心扩展
- 概览
- 自动补全
- Avro
- AWS
- Azure
- Delta
- DuckLake
- 编码
- Excel
- 全文搜索
- httpfs (HTTP 和 S3)
- Iceberg
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- 空间
- SQLite
- TPC-DS
- TPC-H
- UI
- VSS
- 指南
- 概览
- 数据查看器
- 数据库集成
- 文件格式
- 概览
- CSV 导入
- CSV 导出
- 直接读取文件
- Excel 导入
- Excel 导出
- JSON 导入
- JSON 导出
- Parquet 导入
- Parquet 导出
- 查询 Parquet 文件
- 使用 file: 协议访问文件
- 网络和云存储
- 概览
- HTTP Parquet 导入
- S3 Parquet 导入
- S3 Parquet 导出
- S3 Iceberg 导入
- S3 Express One
- GCS 导入
- Cloudflare R2 导入
- 通过 HTTPS / S3 使用 DuckDB
- Fastly 对象存储导入
- 元查询
- ODBC
- 性能
- Python
- 安装
- 执行 SQL
- Jupyter Notebooks
- marimo Notebooks
- Pandas 上的 SQL
- 从 Pandas 导入
- 导出到 Pandas
- 从 Numpy 导入
- 导出到 Numpy
- Arrow 上的 SQL
- 从 Arrow 导入
- 导出到 Arrow
- Pandas 上的关系型 API
- 多个 Python 线程
- 与 Ibis 集成
- 与 Polars 集成
- 使用 fsspec 文件系统
- SQL 编辑器
- SQL 功能
- 代码片段
- 故障排除
- 术语表
- 离线浏览
- 操作手册
- 开发
- 内部结构
- 为什么选择 DuckDB
- 行为准则
- 发布日历
- 路线图
- 站点地图
- 在线演示
文档 / 指南 / Python
Apache Arrow 上的 SQL
DuckDB 可以查询多种不同类型的 Apache Arrow 对象。
Apache Arrow 表
存储在局部变量中的Arrow 表可以像 DuckDB 中的常规表一样进行查询。
import duckdb
import pyarrow as pa
# connect to an in-memory database
con = duckdb.connect()
my_arrow_table = pa.Table.from_pydict({'i': [1, 2, 3, 4],
'j': ["one", "two", "three", "four"]})
# query the Apache Arrow Table "my_arrow_table" and return as an Arrow Table
results = con.execute("SELECT * FROM my_arrow_table WHERE i = 2").arrow()
Apache Arrow 数据集
存储为变量的Arrow 数据集也可以像常规表一样进行查询。数据集可用于指向 Parquet 文件目录以分析大型数据集。DuckDB 会将列选择和行过滤器下推到数据集扫描操作中,以便只有必要的数据被拉入内存。
import duckdb
import pyarrow as pa
import tempfile
import pathlib
import pyarrow.parquet as pq
import pyarrow.dataset as ds
# connect to an in-memory database
con = duckdb.connect()
my_arrow_table = pa.Table.from_pydict({'i': [1, 2, 3, 4],
'j': ["one", "two", "three", "four"]})
# create example Parquet files and save in a folder
base_path = pathlib.Path(tempfile.gettempdir())
(base_path / "parquet_folder").mkdir(exist_ok = True)
pq.write_to_dataset(my_arrow_table, str(base_path / "parquet_folder"))
# link to Parquet files using an Arrow Dataset
my_arrow_dataset = ds.dataset(str(base_path / 'parquet_folder/'))
# query the Apache Arrow Dataset "my_arrow_dataset" and return as an Arrow Table
results = con.execute("SELECT * FROM my_arrow_dataset WHERE i = 2").arrow()
Apache Arrow 扫描器
存储为变量的Arrow 扫描器也可以像常规表一样进行查询。扫描器会读取数据集并选择特定列或应用行级过滤。这类似于 DuckDB 将列选择和过滤器下推到 Arrow 数据集的方式,但使用的是 Arrow 计算操作。Arrow 可以使用异步 I/O 快速访问文件。
import duckdb
import pyarrow as pa
import tempfile
import pathlib
import pyarrow.parquet as pq
import pyarrow.dataset as ds
import pyarrow.compute as pc
# connect to an in-memory database
con = duckdb.connect()
my_arrow_table = pa.Table.from_pydict({'i': [1, 2, 3, 4],
'j': ["one", "two", "three", "four"]})
# create example Parquet files and save in a folder
base_path = pathlib.Path(tempfile.gettempdir())
(base_path / "parquet_folder").mkdir(exist_ok = True)
pq.write_to_dataset(my_arrow_table, str(base_path / "parquet_folder"))
# link to Parquet files using an Arrow Dataset
my_arrow_dataset = ds.dataset(str(base_path / 'parquet_folder/'))
# define the filter to be applied while scanning
# equivalent to "WHERE i = 2"
scanner_filter = (pc.field("i") == pc.scalar(2))
arrow_scanner = ds.Scanner.from_dataset(my_arrow_dataset, filter = scanner_filter)
# query the Apache Arrow scanner "arrow_scanner" and return as an Arrow Table
results = con.execute("SELECT * FROM arrow_scanner").arrow()
Apache Arrow RecordBatch 读取器
Arrow RecordBatch 读取器是 Arrow 流式二进制格式的读取器,也可以像表一样直接查询。这种流式格式在发送 Arrow 数据以进行进程间通信或语言运行时之间通信等任务时非常有用。
import duckdb
import pyarrow as pa
# connect to an in-memory database
con = duckdb.connect()
my_recordbatch = pa.RecordBatch.from_pydict({'i': [1, 2, 3, 4],
'j': ["one", "two", "three", "four"]})
my_recordbatchreader = pa.ipc.RecordBatchReader.from_batches(my_recordbatch.schema, [my_recordbatch])
# query the Apache Arrow RecordBatchReader "my_recordbatchreader" and return as an Arrow Table
results = con.execute("SELECT * FROM my_recordbatchreader WHERE i = 2").arrow()