搜索快捷键 cmd + k | ctrl + k
- 安装
- 文档
- 入门
- 连接
- 数据导入
- 客户端 API
- 概览
- ADBC
- C
- C++
- CLI
- Dart
- Go
- Java (JDBC)
- Julia
- Node.js (已弃用)
- Node.js (Neo)
- ODBC
- PHP
- Python
- R
- Rust
- Swift
- Wasm
- SQL
- 介绍
- 语句
- 概览
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH 和 DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT 和 IMPORT DATABASE
- INSERT
- LOAD / INSTALL
- PIVOT
- 性能分析
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- 事务管理
- UNPIVOT
- UPDATE
- USE
- VACUUM
- 查询语法
- SELECT
- FROM 和 JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT 和 OFFSET
- SAMPLE
- 展开嵌套
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- 集合操作
- 预处理语句
- 数据类型
- 表达式
- 函数
- 概览
- 聚合函数
- 数组函数
- 位字符串函数
- Blob 函数
- 日期格式化函数
- 日期函数
- 日期部分函数
- 枚举函数
- 间隔函数
- Lambda 函数
- 列表函数
- 映射函数
- 嵌套函数
- 数值函数
- 模式匹配
- 正则表达式
- 结构体函数
- 文本函数
- 时间函数
- 时间戳函数
- 带时区时间戳函数
- 联合函数
- 实用函数
- 窗口函数
- 约束
- 索引
- 元查询
- DuckDB 的 SQL 方言
- 示例
- 配置
- 扩展
- 核心扩展
- 概览
- 自动补全
- Avro
- AWS
- Azure
- Delta
- DuckLake
- 编码
- Excel
- 全文搜索
- httpfs (HTTP 和 S3)
- Iceberg
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- 空间
- SQLite
- TPC-DS
- TPC-H
- UI
- VSS
- 指南
- 概览
- 数据查看器
- 数据库集成
- 文件格式
- 概览
- CSV 导入
- CSV 导出
- 直接读取文件
- Excel 导入
- Excel 导出
- JSON 导入
- JSON 导出
- Parquet 导入
- Parquet 导出
- 查询 Parquet 文件
- 使用 file: 协议访问文件
- 网络和云存储
- 概览
- HTTP Parquet 导入
- S3 Parquet 导入
- S3 Parquet 导出
- S3 Iceberg 导入
- S3 Express One
- GCS 导入
- Cloudflare R2 导入
- 通过 HTTPS / S3 使用 DuckDB
- Fastly 对象存储导入
- 元查询
- ODBC
- 性能
- Python
- 安装
- 执行 SQL
- Jupyter Notebooks
- marimo Notebooks
- Pandas 上的 SQL
- 从 Pandas 导入
- 导出到 Pandas
- 从 Numpy 导入
- 导出到 Numpy
- Arrow 上的 SQL
- 从 Arrow 导入
- 导出到 Arrow
- Pandas 上的关系型 API
- 多个 Python 线程
- 与 Ibis 集成
- 与 Polars 集成
- 使用 fsspec 文件系统
- SQL 编辑器
- SQL 功能
- 代码片段
- 故障排除
- 术语表
- 离线浏览
- 操作手册
- 开发
- 内部结构
- 为什么选择 DuckDB
- 行为准则
- 发布日历
- 路线图
- 站点地图
- 在线演示
文档 / 客户端 API
Rust 客户端
DuckDB Rust 客户端的最新版本是 1.3.2。
安装
DuckDB Rust 客户端可以从 crates.io 安装。有关详细信息,请参阅 docs.rs。
基本 API 用法
duckdb-rs 是基于 DuckDB C API 的一个符合人体工程学的包装器,请参阅 README 获取详细信息。
启动与关闭
要使用 duckdb,您必须首先使用 Connection::open()
初始化一个 Connection
句柄。Connection::open()
将要读写数据的数据库文件作为参数。如果数据库文件不存在,它将被创建(文件扩展名可以是 .db
、.duckdb
或其他任何后缀)。您也可以使用 Connection::open_in_memory()
来创建内存数据库。请注意,对于内存数据库,数据不会持久化到磁盘(即,当您退出进程时,所有数据都将丢失)。
use duckdb::{params, Connection, Result};
let conn = Connection::open_in_memory()?;
当 Connection
超出作用域时(通过 Drop
),它将自动为您关闭底层数据库连接。您也可以使用 conn.close()
显式关闭 Connection
。在典型情况下,这两种方式之间没有太大区别,但如果发生错误,您将有机会通过显式关闭来处理它。
查询
SQL 查询可以使用连接的 execute()
方法发送到 DuckDB,或者我们也可以预处理语句然后再进行查询。
#[derive(Debug)]
struct Person {
id: i32,
name: String,
data: Option<Vec<u8>>,
}
conn.execute(
"INSERT INTO person (name, data) VALUES (?, ?)",
params![me.name, me.data],
)?;
let mut stmt = conn.prepare("SELECT id, name, data FROM person")?;
let person_iter = stmt.query_map([], |row| {
Ok(Person {
id: row.get(0)?,
name: row.get(1)?,
data: row.get(2)?,
})
})?;
for person in person_iter {
println!("Found person {:?}", person.unwrap());
}
追加器
Rust 客户端支持 DuckDB Appender API 用于批量插入。例如
fn insert_rows(conn: &Connection) -> Result<()> {
let mut app = conn.appender("foo")?;
app.append_rows([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]])?;
Ok(())
}