搜索快捷键 cmd + k | ctrl + k
- 安装
- 文档
- 入门
- 连接
- 数据导入
- 客户端 API
- 概览
- ADBC
- C
- C++
- CLI
- Dart
- Go
- Java (JDBC)
- Julia
- Node.js (已弃用)
- Node.js (Neo)
- ODBC
- PHP
- Python
- R
- Rust
- Swift
- Wasm
- SQL
- 介绍
- 语句
- 概览
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH 和 DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT 和 IMPORT DATABASE
- INSERT
- LOAD / INSTALL
- PIVOT
- 性能分析
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- 事务管理
- UNPIVOT
- UPDATE
- USE
- VACUUM
- 查询语法
- SELECT
- FROM 和 JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT 和 OFFSET
- SAMPLE
- 展开嵌套
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- 集合操作
- 预处理语句
- 数据类型
- 表达式
- 函数
- 概览
- 聚合函数
- 数组函数
- 位字符串函数
- Blob 函数
- 日期格式化函数
- 日期函数
- 日期部分函数
- 枚举函数
- 间隔函数
- Lambda 函数
- 列表函数
- 映射函数
- 嵌套函数
- 数值函数
- 模式匹配
- 正则表达式
- 结构体函数
- 文本函数
- 时间函数
- 时间戳函数
- 带时区时间戳函数
- 联合函数
- 实用函数
- 窗口函数
- 约束
- 索引
- 元查询
- DuckDB 的 SQL 方言
- 示例
- 配置
- 扩展
- 核心扩展
- 概览
- 自动补全
- Avro
- AWS
- Azure
- Delta
- DuckLake
- 编码
- Excel
- 全文搜索
- httpfs (HTTP 和 S3)
- Iceberg
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- 空间
- SQLite
- TPC-DS
- TPC-H
- UI
- VSS
- 指南
- 概览
- 数据查看器
- 数据库集成
- 文件格式
- 概览
- CSV 导入
- CSV 导出
- 直接读取文件
- Excel 导入
- Excel 导出
- JSON 导入
- JSON 导出
- Parquet 导入
- Parquet 导出
- 查询 Parquet 文件
- 使用 file: 协议访问文件
- 网络和云存储
- 概览
- HTTP Parquet 导入
- S3 Parquet 导入
- S3 Parquet 导出
- S3 Iceberg 导入
- S3 Express One
- GCS 导入
- Cloudflare R2 导入
- 通过 HTTPS / S3 使用 DuckDB
- Fastly 对象存储导入
- 元查询
- ODBC
- 性能
- Python
- 安装
- 执行 SQL
- Jupyter Notebooks
- marimo Notebooks
- Pandas 上的 SQL
- 从 Pandas 导入
- 导出到 Pandas
- 从 Numpy 导入
- 导出到 Numpy
- Arrow 上的 SQL
- 从 Arrow 导入
- 导出到 Arrow
- Pandas 上的关系型 API
- 多个 Python 线程
- 与 Ibis 集成
- 与 Polars 集成
- 使用 fsspec 文件系统
- SQL 编辑器
- SQL 功能
- 代码片段
- 故障排除
- 术语表
- 离线浏览
- 操作手册
- 开发
- 内部结构
- 为什么选择 DuckDB
- 行为准则
- 发布日历
- 路线图
- 站点地图
- 在线演示
文档 / 客户端 API
Swift 客户端
DuckDB 提供 Swift 客户端。详见发布公告。
实例化 DuckDB
DuckDB 支持内存数据库和持久化数据库。要使用内存数据库,请运行
let database = try Database(store: .inMemory)
要使用持久化数据库,请运行
let database = try Database(store: .file(at: "test.db"))
查询可以通过数据库连接发出。
let connection = try database.connect()
DuckDB 支持每个数据库多个连接。
应用程序示例
页面的其余部分基于我们发布公告中的示例,该示例使用从NASA 系外行星档案直接加载到 DuckDB 的原始数据。
创建应用程序特定类型
我们首先创建一个应用程序特定类型,用于存储我们的数据库和连接,并通过它最终定义我们的应用程序特定查询。
import DuckDB
final class ExoplanetStore {
let database: Database
let connection: Connection
init(database: Database, connection: Connection) {
self.database = database
self.connection = connection
}
}
加载 CSV 文件
我们从NASA 系外行星档案加载数据
wget https://exoplanetarchive.ipac.caltech.edu/TAP/sync?query=select+pl_name+,+disc_year+from+pscomppars&format=csv -O downloaded_exoplanets.csv
将 CSV 文件下载到本地后,我们可以使用以下 SQL 命令将其作为新表加载到 DuckDB 中
CREATE TABLE exoplanets AS
SELECT * FROM read_csv('downloaded_exoplanets.csv');
让我们将其封装为我们 ExoplanetStore
类型的一个新的异步工厂方法
import DuckDB
import Foundation
final class ExoplanetStore {
// Factory method to create and prepare a new ExoplanetStore
static func create() async throws -> ExoplanetStore {
// Create our database and connection as described above
let database = try Database(store: .inMemory)
let connection = try database.connect()
// Download the CSV from the exoplanet archive
let (csvFileURL, _) = try await URLSession.shared.download(
from: URL(string: "https://exoplanetarchive.ipac.caltech.edu/TAP/sync?query=select+pl_name+,+disc_year+from+pscomppars&format=csv")!)
// Issue our first query to DuckDB
try connection.execute("""
CREATE TABLE exoplanets AS
SELECT * FROM read_csv('\(csvFileURL.path)');
""")
// Create our pre-populated ExoplanetStore instance
return ExoplanetStore(
database: database,
connection: connection
)
}
// Let's make the initializer we defined previously
// private. This prevents anyone accidentally instantiating
// the store without having pre-loaded our Exoplanet CSV
// into the database
private init(database: Database, connection: Connection) {
...
}
}
查询数据库
以下示例通过异步函数从 Swift 内部查询 DuckDB。这意味着在查询执行期间,调用者不会被阻塞。然后,我们将使用 DuckDB 的 ResultSet
cast(to:)
系列方法将结果列转换为 Swift 原生类型,最后将其封装在 TabularData 框架的 DataFrame
中。
...
import TabularData
extension ExoplanetStore {
// Retrieves the number of exoplanets discovered by year
func groupedByDiscoveryYear() async throws -> DataFrame {
// Issue the query we described above
let result = try connection.query("""
SELECT disc_year, count(disc_year) AS Count
FROM exoplanets
GROUP BY disc_year
ORDER BY disc_year
""")
// Cast our DuckDB columns to their native Swift
// equivalent types
let discoveryYearColumn = result[0].cast(to: Int.self)
let countColumn = result[1].cast(to: Int.self)
// Use our DuckDB columns to instantiate TabularData
// columns and populate a TabularData DataFrame
return DataFrame(columns: [
TabularData.Column(discoveryYearColumn).eraseToAnyColumn(),
TabularData.Column(countColumn).eraseToAnyColumn(),
])
}
}
完整项目
如需完整的示例项目,请克隆 DuckDB Swift 仓库并打开位于 Examples/SwiftUI/ExoplanetExplorer.xcodeproj
的可运行应用程序项目。